
1

1

1

1

The Weizmann Institute of ScienceThe Weizmann Institute of Science

Evolving Boxes as

Flexible Tools

for Teaching Declarative and

Procedural Aspects of

Logic Programming

2

The Weizmann Institute of ScienceThe Weizmann Institute of Science

Bruria Haberman

Zahava Scherz

Dept. of Science Teaching

2

2

2

3

The PresentationThe Presentation
uComputer science curriculum for

high schools in Israel.

uThe Logic Programming course.

uThe “Evolving Boxes” instructional

approach.

uResearch: students’ mental models.

4

The PresentationThe Presentation

uComputer science curriculum for

high schools in Israel.

uThe Logic Programming course.

uThe “Evolving Boxes” instructional

approach.

uResearch: students’ mental models.

3

3

3

5

Computer Science Computer Science
CurriculumCurriculum

uCombination of theoretical and practical

issues.

uIntroduction of computer science

concepts and ideas independent of

specific computers and programming

languages.

uImplementation of those concepts and

ideas in a real programming language.

6

The Modules of The Computer The Modules of The Computer
Science CurriculumScience Curriculum

uFundamentals (180 hours).

uA conceptually different paradigm

or an application module (90 hours).

u Software design (90 hours).

uTheoretical module (90 hours).

4

4

4

7

A procedural programming

paradigm covers basic and

expanded concepts of algorithmics.

uAn algorithmic problem and its solution;

uMethods of algorithmic analysis and

design, stepwise refinement;

uCorrectness and efficiency of algorithms;

The Fundamentals ModuleThe Fundamentals Module

8

The course teaches programming

as a means for getting the

computer to execute an algorithm

uThe Pascal programming language was

recommended as a suitable environment

for implementing the algorithms.

uRecently C is used as an alternative

programming language.

The Fundamentals ModuleThe Fundamentals Module

5

5

5

9

The Modules of The Computer The Modules of The Computer
Science CurriculumScience Curriculum

A conceptually different paradigm:

Alternative units (each unit 90 hours) :

uLogic programming

uFunctional programming

uSystem-level programming

10

The Modules of The Computer The Modules of The Computer
Science CurriculumScience Curriculum

An application module:

Alternative units (each unit 90 hours) :

uManagement of information systems

uComputer graphics

uWeb Programming

6

6

6

11

The Modules of The Computer The Modules of The Computer
Science CurriculumScience Curriculum

Advanced modules:

uSoftware design (90 hours)

uData structures and abstract data types as

tools for the design of computer systems.

uTheoretical subject (90 hours)

uModels of computation, parallel

programming, OOP.

12

The PresentationThe Presentation
uComputer science curriculum for

high schools in Israel.

uThe Logic Programming course.

uThe “Evolving Boxes” instructional

approach.

uResearch: students’ mental models.

7

7

7

13

The Logic Programming The Logic Programming
Course Main GoalsCourse Main Goals

uDifferent approach to problem analysis

and problem solving (different

paradigm).

uTeaching recurring computer science

concepts.

uTeaching logic programming (in Prolog)

14

The Logic Programming The Logic Programming
Course Main GoalsCourse Main Goals

uKnowledge representation and

formalization tools and methods.

uApplications across the curricula.

uDeveloping logical reasoning.

8

8

8

15

The TwoThe Two--Stage Logic Stage Logic
Programming Course Programming Course

Basic Module (90 hours)Basic Module (90 hours)

uIntroduction to logic

uPropositional and predicate Prolog

uSimple recursion

uCompound data structures

uLists in Prolog

uIntroduction to Abstract Data Types

(ADTs)

16

The TwoThe Two--Stage Logic Stage Logic
Programming Course Programming Course

Advanced Module (60 hours)Advanced Module (60 hours)

uAdvanced methods of problem

solving and knowledge

representation

uAdvanced programming techniques

uAdvanced generic ADTs

9

9

9

17

Logic ProgrammingLogic Programming-- A A
Declarative ParadigmDeclarative Paradigm

Emphasis on a declarative

approach to computer

programming

18

Procedural ParadigmProcedural Paradigm

An algorithm that solves the

problem

An algorithm that solves the

problem
HOW

10

10

10

19

Procedural ParadigmProcedural Paradigm

An algorithm that solves the

problem

Declarative paradigm
A declarative description of the

problem

An algorithm that solves the

problem

Declarative paradigm
A declarative description of the

problem

HOW

WHAT

20

Sometimes the procedural aspects

of logic programming, besides the

declarative ones, are also

encountered,

especially when manipulating

compound data structures.

11

11

11

21

Therefore, it is important to use suitable

instructional tools to teach

the interweaving declarative and procedural

aspects of programming.

One way that this can be accomplished is by

using evolving programming boxes.

22

The PresentationThe Presentation
uComputer science curriculum for

high schools in Israel.

uThe logic programming course.

uThe “Evolving Boxes” instructional

approach (when teaching abstract data types -

ADTs) .

uResearch: students’ mental models.

12

12

12

23

The Instructional Model The Instructional Model
For Teaching For Teaching ADTsADTs

Why To Teach?Why To Teach?

uA concept in computer science.

uA tool for knowledge representation

and problem solving.

uTo avoid difficult programming

tasks (enables to abstract details)

24

The Instructional Model The Instructional Model
For Teaching For Teaching ADTsADTs

How To Teach?How To Teach?

uThree levels of ADTs

(According to students’ abilities).

uFrom abstraction to application.

uPBL- problem solving and project

oriented learning.

13

13

13

25

The Levels of
Abstract Data Type

The Levels of The Levels of
Abstract Data Type

implementationspecification

usage

26

n Abstraction

An introduction to abstract and formal

concepts and to various methods of problem

solving and knowledge representation.

n Implementation

Implementation of abstract and formal

concepts in terms of computer programs.

n Application

Problem solving and development of

computer knowledge-based systems.

14

14

14

27

Problem SolvingProblem Solving

concrete

problem

concrete

problem

general

problem

general

problem

Abstract

Data Type

generalization

abstractionformalization

concretization

28

Stages of Project DevelopmentStages of Project Development

uSubject’s choice

uSpecification

uKnowledge acquisition

uConceptualization

uGeneralization

uAbstraction

uFormalization

uConcretization

uTesting

15

15

15

29

Project DevelopmentProject Development

uSubject’s choice -

Decision about the knowledge domain.

uSpecification -

Determination of the main goals of the

desired system.

uKnowledge acquisition -

Literature survey, interviews with

experts.

30

Project DevelopmentProject Development

uConceptualization -

Defining the main ideas, concepts,

entities and relations among them -

problem predicates.

uAbstraction -

Expressing the concepts and relations in

terms of ADTs.

16

16

16

31

Project DevelopmentProject Development

uFormalization -

Representation of the concepts and the

relations as a prolog program while using

“black boxes” that represent ADTs.

uTesting -

Assessment of the program according to

the specified requirements.

32

Problem Solving-

Using ADTs

An Example

Males In The “Biblical Family”

17

17

17

33

Abstraction

34

The Use Of ADTs For
Program Development
The Use Of The Use Of ADTsADTs For For

Program DevelopmentProgram Development

MappingMapping

the

problem
an abstract

model

predicates

problem
general

predicates

18

18

18

35

Males In The “Biblical
Family”

Males In The Males In The ““Biblical Biblical
FamilyFamily””

Jossef

Jacob Eisav

Isaac Ishmael

Abraham

36

The Use Of ADTs For
Program Development
The Use Of The Use Of ADTsADTs For For

Program DevelopmentProgram Development

MappingMapping

males in the

“Biblical Family”
tree

19

19

19

37

Problem

Predicate:

Person’s Ancestors

38

The Ancestors of JosephThe Ancestors of JosephThe Ancestors of Joseph

Jossef

Jacob Eisav

Isaac Ishmael

Abraham

path

root

20

20

20

39

The Use of ADTs for
Program Development
The Use of The Use of ADTsADTs for for

Program DevelopmentProgram Development

MappingMapping

person’s

ancestors

root

path

40

Formalization

21

21

21

41

The ProductThe ProductThe Product

InterfaceInterface

DATADATA

The specificThe specific

casecase

(facts)(facts)

PROGRAMPROGRAM

The generalThe general

casecase

(rules)(rules)

BLACK BOXBLACK BOX

The abstractThe abstract

modelmodel

ADTADT

42

father(‘Abraham’ , ’Isaac’).

father(‘Isaac’ , ’Jacob’).

ancestors(x,y):-

root(z),

path(z,x,y).

root(z):-

path(z,x,y):-

A Prolog ProgramA Prolog ProgramA Prolog Program

root

Abraham

Isaac

d

Jacob f g

22

22

22

43

The Instructional Approach

We recommend that

the ADT concept

should be

gradually presented

44

Start with

The Black Box

Approach

23

23

23

45

The The ““Black box to White boxBlack box to White box””
Instructional ApproachInstructional Approach

uFirst activate black boxes and get

familiar with their functionality and

behavior (running predefined

programs);

uand then, look inside the black boxes,

and get familiar with the

programming statements.

46

u The black boxes are presented in terms of what they do

and not how it is done. We emphasize the following

declarative aspects:

u The use of a black box is independent of its

implementation and therefore does not require becoming

acquainted with the implementation details.

u The use of a black box binds to its interface.

u The use of black boxes has declarative aspects in the

sense that the definition of problem predicates is done

declaratively in terms of general ADT predicates.

24

24

24

47

The Instructional ApproachThe Instructional ApproachThe Instructional Approach

Interweaving declarative

and procedural aspects

Declarative-

Abstraction

Procedural-

Implementation

48

The Instructional Approach

We recommend that

the ADT concept

should be gradually presented

in 8 consecutive stages.

25

25

25

49

declarative and

procedural

Knowledge integration and

autonomous problem solving

8

proceduralImplementation of new ADTs7

proceduralManipulation of ADT white boxes6

advanced

only

proceduralAcquaintance with ADT grey

boxes

5

declarativeSpecification of new ADTs4

declarative and

procedural

Use of ADT black boxes in

programming

3

declarativeDetermination of ADTs to solve a

given problem

2

beginners

and

advanced

declarativeAcquaintance with given

specifications of ADTs

1

Target
population

EmphasisStage

50

Research-

Fostering Integrative

Programming Knowledge

26

26

26

51

Research GoalsResearch Goals
uThe main goal of our research was to

follow the problem solving processes

and the development processes of

students’ projects.

uThe research concentrated on:

uThe use of ADTs.

uAttitudes towards ADTs.

52

Research ToolsResearch Tools

uProblem solving tasks

uVideo tapes

uAudio tapes

uObservations

uInterviews

uStudents’ written reports

27

27

27

53

ProcedureProcedure

uThe research population consisted of

413 10th-12th grade students who

studied the logic programming course.

uThe students were divided into two

groups:

u beginners - 148 students (5 classes)

u advanced - 265 students (7 classes)

54

Research ResultsResearch Results

u Students adapted various

strategies for using ADTs, some of

which proved that they correctly

grasped ADT as a formal CS

concept.

u Other students improvised

alternative strategies, which indicated

that their conception of ADT did not

match the correct CS definition.

28

28

28

55

Research ResultsResearch Results
Nevertheless, the use of ADTs for problem

solving and knowledge representation helped

many students to develop correct programs

regardless of the strategies they used.

u For most students, ADTs served as a

project development organizer.

u Students mostly expressed positive attitudes

toward ADTs as problem solving and

programming tools

56

Mental Models

of ADT Boxes

29

29

29

Code modification,

rewriting, creating new

boxes

White BoxGeneric Templates

for defining new

predicates

Deleting code, Asserting

code

Flexible

White Box

Problem-oriented

“Cut and paste”

Comprehension of

implementation details

Read Only

Grey Box

Visible,

comprehensible,

yet unchangeable

Code cloning

duplication)(

Unfolded

Grey Box

Visible, yet

incomprehensible

“ Copy and paste”

Transparent useBlack BoxSealed, inaccessible

Associative activitiesType of

box

Perception of box

58

father(‘Abraham’ , ’Isaac’).

father(‘Isaac’ , ’Jacob’).

ancestors(x,y):-

root(z),

path(z,x,y).

root(z):-

path(z,x,y):-

Transparent useTransparent useTransparent use

root

Abraham

Isaac

d

Jacob f g

30

30

30

59

father(‘Abraham’ , ’Isaac’).

Father(‘Isaac’ , ’Jacob’).

ancestors(x,y):-

root(z),

path(z,x,y).

root(z):-

path(z,x,y):-

Code Cloning (Duplication)Code Cloning (Duplication)Code Cloning (Duplication)

root

Abraham

Isaac

d

Jacob f g

60

father(‘Abraham’ , ’Isaac’).

father(‘Isaac’ , ’Jacob’).

ancestors(X,Y):-
father(Z,_), not father(_,Z),

find_ancestors(Z,X,Y).

find_ancestors(Z,Z,[Z]):-

find_ancestors(Z,X,[Z|Rest]):- father(Z,W),

find_ancestors(W,X,Rest).

Code Modification (Rewriting)Code Modification (Rewriting)Code Modification (Rewriting)

Path

Root

31

31

31

61

Construction of

Integrative Knowledge

Construction of Integrative KnowledgeConstruction of Integrative Knowledge

u The use of predefined black boxes enabled

students to concentrate on high-level cognitive

tasks- problem analysis, problem solving, and

knowledge representation without the burden

of knowing complex implementation details.

u In contrast, the white boxes enabled

students to learn, through examples, how to

implement ADTs according to a given

specification, and to practice code reuse and

modification.

32

32

32

Construction of Integrative KnowledgeConstruction of Integrative Knowledge

The students defined their own rules

of using ADT boxes and

demonstrated a variety of strategies

of using them while writing their

programs.

Construction of Integrative KnowledgeConstruction of Integrative Knowledge

uThose who learned and comprehended the notions

of the formal ADT concept, use it the way expert

programmers do:

uThey first try to determine the suitable predefined

ADT for the given problem and then transparently use

the relevant ADT black box.

uOnly when the familiar predefined black boxes are

insufficient to solve the problem, do they unfold a

relevant box and make the minimal necessary changes,

or specify and implement a new ADT.

uOnce the new ADT box is implemented, they use it

transparently as is common among professionals.

33

33

33

Construction of Integrative KnowledgeConstruction of Integrative Knowledge

u In contrast, students who are immature, and are

still in the middle of the learning process, interpret

in their own way the roles of the ADT boxes.

u Some of them avoid using black boxes because they

believe that the encapsulation of the general predicates

they used reduces the meaning, clarity, and

completeness of their programs.

u Others, although transparently used predefined black

boxes, temporarily avoided using them when they

started learning about their implementation.

66

Conclusions

and

Recommendations

34

34

34

u ADT boxes can be employed to teach the

interweaving declarative and procedural

aspects of logic programming.

uWe believe that the suggested instructional

model can be adopted to emphasize various

aspects of any programming paradigm.

u It can also be used to guide the students

toward proficiency in programming based

on abstraction and code reuse.

68

We recommend that the

suggested instructional model

be employed while providing

the students with an appropriate

learning environment that

promotes learning processes in

the context of knowledge

integration.

35

35

35

uScaffolding examples should be used to

demonstrate the activities associated with

each stage of the model.

u Appropriate exercises and support activities

should be developed to motivate students to

use black boxes, comprehend the code of

white boxes, reuse code provided by others,

modify code, and choose the appropriate

boxes to solve given problems.

70

Moreover, in order to foster

integrative knowledge,

students should continue,

in each stage of learning,

to practice and meaningfully

utilize the tools and the

methods that they have

previously acquired.

36

36

36

71

Thank You

