The Weizmann Institute of Science

Evolving Boxes as
Flexible Tools
for Teaching Declarative and

Procedural Aspects of
Logic Programming

The Weizmann Institute of Science

Bruria Haberman
Zahava Scherz

Dept. of Science Teaching

Computer science curriculum for
high schools in Israel.

The Logic Programming course.

The “Evolving Boxes” instructional
approach.

Research: students’ mental models.

\ | /
V4 -.

Computer science curriculum for
high schools in Israel.

The Logic Programming course.
The “Evolving Boxes” instructional
approach.

Research: students’ mental models.

4

\ | /
V4 -.

Combination of theoretical and practical
ISSues.

Introduction of computer science
concepts and ideas independent of
specific computers and programming
languages.

Implementation of those concepts and
ideas in a real programming Ianguage.5

\ | /
V4 -.

Fundamentals (180 hours).

A conceptually different paradigm
or an application module (90 hours).

Software design (90 hours).
Theoretical module (90 hours).

A procedural programming
paradigm covers basic and
expanded concepts of algorithmics.
An algorithmic problem and its solution;

Methods of algorithmic analysis and
design, stepwise refinement;

Correctness and efficiency of algorithms;

7

The Pascal programming language was
recommended as a suitable environment
for implementing the algorithms.

Recently C is used as an alternative
programming language.

\ | /
V4 -.

A conceptually different paradigm:

Logic programming
Functional programming
System-level programming

An application module:

Management of information systems
Computer graphics
Web Programming

Advanced modules:

Software design (90 hours)
uData structures and abstract data types as
tools for the design of computer systems.
Theoretical subject (90 hours)

uModels of computation, parallel
programming, OOP.

\ | /
V4 -.

Computer science curriculum for
high schools in Israel.

The Logic Programming course.

The “Evolving Boxes” instructional
approach.
Research: students’ mental models.

\ | /
V4 -.

Different approach to problem analysis
and problem solving (different
paradigm).

Teaching recurring computer science
concepts.

Teaching logic programming (in Prolog)

K]

\ | /
V4 -.

Knowledge representation and
formalization tools and methods.

Applications across the curricula.
Developing logical reasoning.

Basic Module (90 hours)

Introduction to logic

Propositional and predicate Prolog
Simple recursion

Compound data structures

Lists in Prolog

Introduction to Abstract Data Types
(ADTS)

\ | 4
V4 -.

Advanced Module (60 hours)

Advanced methods of problem
solving and knowledge
representation

Advanced programming techniques
Advanced generic ADTs

Emphasis on a declarative
approach to computer
programming

% Procedural Paradigm

An algorithm that solves the

problem HOW

% Procedural Paradigm

An algorithm that solves the

problem HOW

Declarative paradigm

A declarative description of the
problem

\ | /
V4 -.

Sometimes the procedural aspects
of logic programming, besides the
declarative ones, are also
encountered,

especially when manipulating
compound data structures. =

10

\ | /
V4 -.

Therefore, it isimportant to use suitable
Instructional tools to teach

the interweaving declarative and procedural
aspects of programming.

One way that this can be accomplished is by
using evolving programming boxes.

21

\ | /
V4 -.

Computer science curriculum for
high schools in Israel.

The logic programming course.
The “Evolving Boxes™ instructional

approach (when teaching abstract data types -
ADTS) .

Research: students’ mental models.

22

11

Why To Teach?

A concept In computer science.

A tool for knowledge representation
and problem solving.

To avoid difficult programming
tasks (enables to abstract details)

23

How To Teach?

Three levels of ADTs

(According to students’ abilities).
From abstraction to application.

PBL- problem solving and project
oriented learning.

24

12

specification implementation

>\

Abstraction m

An introduction to abstract and formal
concepts and to various methods of problem
solving and knowledge representation.

Implementation

Implementation of abstract and formal
concepts in terms of computer programs.

Application

Problem solving and development of
computer knowledge-based systems.

13

Problem Solving
Data Type
formalization \abstraction

general general

problem problem

concretization generalization

concrete concrete
problem problem

u Subject’s choice

u Specification

u Knowledge acquisition
u Conceptualization

u Generalization

u Abstraction

u Formalization

u Concretization
u Testing

Stages of Project Development

14

uSubject’s choice -
Decision about the knowledge domain.
uSpecification -

Determination of the main goals of the
desired system.

uKnowledge acquisition -

Literature survey, interviews with
experts.

uConceptualization -

Defining the main ideas, concepts,
entities and relations among them -
problem predicates.

uAbstraction -

Expressing the concepts and relations in
terms of ADTSs.

15

\ | /
V4 -.

uFormalization -

Representation of the concepts and the
relations as a prolog program while using
“black boxes™ that represent ADTSs.

uTesting -

Assessment of the program according to
the specified requirements.

Problem Solving-
Using ADTs

An Example

Males In The “Biblical Family”

16

Abstractionf

Mapping

an abstract
model

=_L_=

the
problem

I genera' prEdicateS
- A —
predicates problem

17

Abraham

Mapping

males in the
“Biblical Family”

18

Predicate:
Person’s Ancestors

v The Ancestors of Joseph
v P

Abraham

19

Mapping

root
path

person’s
ancestors
39

20

DYAN AN
The specific
case
(facts)
BLACK BOX

The abstract
model Interface PROGRAM

ADT The general
case
(1)

* A Prolog Program

ancestors(x,y):-
root(z),
path(z,x,y).

Abraham

root(z):-
path(Z,X,y)'

21

* The Instructional Approach

We recommend that
the ADT concept

should be
gradually presented

Start with
The Black Box
Approach

22

\ | /
V4 -.

First activate black boxes and get
familiar with their functionality and
behavior (running predefined
programs);

and then, look inside the black boxes,

and get familiar with the
programming statements.

\ | /
V4 -.

The black boxes are presented in terms of what they do
and not how it is done. We emphasize the following
declarative aspects:

The use of ablack box isindependent of its
implementation and therefore does not require becoming
acguainted with the implementation details.

The use of ablack box binds to itsinterface.
The use of black boxes has declarative aspectsin the

sense that the definition of problem predicatesis done
declaratively in terms of general ADT predicates.

46

23

Interweaving declarative
and procedural aspects

r %

Declarative- Procedural-
Abstraction | [Implementation

* The Instructional Approach

We recommend that
the ADT concept
should be gradually presented
IN 8 consecutive stages.

24

Target

Stage Emphasis population
Acquaintance with given declarative beginners
specificationsof ADTs and

Deter mination of ADTstosolvea |declarative advanced
given problem

Use of ADT black boxesin declarative and
programming procedural

Specification of new ADTs declarative

Acquaintance with ADT grey procedural advanced
boxes only

Manipulation of ADT white boxes

procedural

Implementation of new ADTs

procedural

Knowledge integration and
autonomous problem solving

declar ative and
procedural

Research-

Fostering Integrative
Programming Knowledge

25

\ | /
V4 -.

The main goal of our research was to
follow the problem solving processes
and the development processes of
students’ projects.

The research concentrated on:
u The use of ADTSs.

uAttitudes towards ADTSs.

\ | /
V4 -.

o
Problem solving tasks
Video tapes
Audio tapes

Observations

Interviews

Students’ written reports

26

The research population consisted of
413 10t-12th grade students who
studied the logic programming course.
The students were divided into two
groups:

u beginners - 148 students (5 classes)

u - 265 students (7 classes)

53

\ | /
V4 -.

Students adapted various
strategies for using ADTSs, some of
which proved that they correctly
grasped ADT as a formal CS
concept.

Other students improvised
alternative strategies, which indicated
that their conception of ADT did not
match the correct CS definition.

27

u

u

X Research Results

Nevertheless, the use of ADTs for problem
solving and knowledge representation helped
many students to develop correct programs
regardless of the strategies they used.

For most students, ADTs served as a
project development organizer.

Students mostly expressed positive attitudes
toward ADTs as problem solving and
programming tools

Mental Models
of ADT Boxes .%%'
“\

28

Perception of box |Typeof |Associativeactivities
box

Sealed, inaccessible |Black Box | Transparent use

Visible, yet Unfolded

incomprehensible Grey Box |(duplication)

“ Copy and paste”’

Visible, Read Only | Comprehension of

comprehensible, Grey Box |implementation details

yet unchangeable

Problem-oriented Flexible |Deleting code, Asserting

“Cut and paste”’ White Box | code

Generic Templates | White Box | Code modification,

for defining new
predicates

rewriting, creating new
boxes

Transparent use

ancestors(x,y):-
root(z),
path(z,x,y).

root(z):-
path(Z,X,y)'

Abraham

29

% Code Cloning (Duplication)

ancestors(x,y):- root)

root(z),

Abraham

d
Isaac

ﬁ*_,ﬁbgvo,@\%/
[

root(z):- =
path(z,x,y):- 59

;F(Code Modification (Rewriting)

ancestors(X,Y):-
father(z,), not father(_,Z)} Root
find_ancestors(Z,X,Y).

find_ancestors(Z,Z,[Z]):-
find_ancestors(Z,X,[Z | Rest]):- father(Z,W), Path

find_ancestors(W,X,Rest).

60

30

Construction of
Integrative Knowledge

The use of predefined black boxes enabled
students to concentrate on high-level cognitive
tasks- problem analysis, problem solving, and
knowledge representation without the burden
of knowing complex implementation details.

In contrast, the white boxes enabled
students to learn, through examples, how to
Implement ADTs according to agiven
specification, and to practice code reuse and
modification.

31

The students defined their own rules
of using ADT boxes and
demonstrated a variety of strategies
of using them while writing their
programs.

Those who learned and comprehended the notions
of theformal ADT concept, use it the way expert
programmers do:

u They first try to determine the suitable predefined

ADT for the given problem and then transparently use
therelevant ADT black box.

u Only when the familiar predefined black boxes are
insufficient to solve the problem, do they unfold a
relevant box and make the minimal necessary changes,
or specify and implement anew ADT.

uOncethe new ADT box is implemented, they use it
transparently as is common among professionals.

32

In contrast, students who are immature, and are
still in the middle of the learning process, interpret
in their own way the roles of the ADT boxes.

u Some of them avoid using black boxes because they
believe that the encapsulation of the general predicates
they used reduces the meaning, clarity, and
compl eteness of their programs.

u Others, athough transparently used predefined black
boxes, temporarily avoided using them when they
started learning about their implementation.

Conclusions

and _
Recommendations

33

ADT boxes can be employed to teach the
interweaving declarative and procedural
aspects of logic programming.

We believe that the suggested instructional
model can be adopted to emphasize various
aspects of any programming paradigm.

It can also be used to guide the students
toward proficiency in programming based
on abstraction and code reuse.

\ | /
V4 -.

We recommend that the
suggested instructional model
be employed while providing

the students with an appropriate
learning environment that
promotes learning processes in
the context of knowledge
Integration.

34

Scaffolding examples should be used to
demonstrate the activities associated with
each stage of the model.

Appropriate exercises and support activities
should be developed to motivate students to
use black boxes, comprehend the code of
white boxes, reuse code provided by others,
modify code, and choose the appropriate
boxes to solve given problems.

~ Moreover, in order to foster
Integrative knowledge,

students should continue,
In each stage of learning,

to practice and meaningfully
utilize the tools and the
methods that they have
previously acquired.

35

Thank You

36

